
Dropout Training  
(Hinton et al. 2012)
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• Introduced in Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2012). 
Improving neural networks by preventing co-adaptation of feature detectors.CoRR, abs/1207.0580.

• Dropout recipe: 

- Each time we present data example x, 
randomly delete each hidden node with 0.5 
probability. 

- This is like sampling from 2|h| different 
architectures. 

- At test time, use all nodes but divide the 
weights by 2. 

• Effect I: Reduce overfitting by preventing ”co-
adaptation” 

• Effect 2: Ensemble model averaging via 
bagging
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Some Results: TIMIT phone recognition
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Table 2.1: Results on the Street View House Numbers dataset.

Method Error %
Binary Features (WDCH) [14] 36.7
HOG [14] 15.0
Stacked Sparse Autoencoders [14] 10.3
KMeans [14] 9.4
Multi-stage Conv Net with average pooling [18] 9.06
Multi-stage Conv Net + L2 pooling [18] 5.36
Multi-stage Conv Net + L4 pooling + padding [18] 4.90
Conv Net + max-pooling 3.95
Conv Net + max pooling + dropout in fully connected layers 3.02
Conv Net + max pooling + dropout in all layers 2.78
Conv Net + max pooling + dropout in all layers + input translations 2.68
Human Performance 2.0

2.4.3 Results on TIMIT

TIMIT is a speech dataset with recordings from 680 speakers covering 8 major dialects of American

English reading ten phonetically-rich sentences in a controlled noise-free environment. It has been used

to benchmark many speech recognition systems. Table. 2.2 compares dropout neural nets against some

of them. The open source Kaldi toolkit [16] was used to preprocess the data into log-filter banks and to

get labels for speech frames. Dropout neural networks were trained on windows of 21 frames to predict

the label of the central frame. No speaker dependent operations were performed. A 6-layer dropout net

gives a phone error rate of 23.4%. This is already a very good performance on this dataset. Dropped

further improves it to 21.8%. Similarly, a 4-layer pretrained dropout net improves the phone error rate

from 22.7% to 19.7%.

Table 2.2: Phone error rate on the TIMIT core test set.

Method Phone Error Rate%
Neural Net (6 layers) [12] 23.4
Dropout Neural Net (6 layers) 21.8
DBN-pretrained Neural Net (4 layers) 22.7
DBN-pretrained Neural Net (6 layers) [12] 22.4
DBN-pretrained Neural Net (8 layers) [12] 20.7
mcRBM-DBN-pretrained Neural Net (5 layers) [2] 20.5
DBN-pretrained Neural Net (4 layers) + dropout 19.7
DBN-pretrained Neural Net (8 layers) + dropout 19.7

2.4.4 Results on Reuters-RCV1

Reuters-RCV1 is a collection of newswire articles from Reuters. We created a subset of this dataset

consisting of 402,738 articles and a vocabulary of 2000 most commonly used words after removing stop

words. The subset was created so that the articles belong to 50 disjoint categories. The task is to identify

the category that a document belongs to. The data was split into equal sized training and test sets.

A neural net with 2 hidden layers of 2000 units each obtained an error rate of 31.05%. Adding

dropout reduced the error marginally to 29.62%.

• Dropout helps. 

• Dropout + pretraining helps more.
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Fig. 1: The error rate on the MNIST test set for a variety of neural network architectures trained
with backpropagation using 50% dropout for all hidden layers. The lower set of lines also
use 20% dropout for the input layer. The best previously published result for this task using
backpropagation without pre-training or weight-sharing or enhancements of the training set is
shown as a horizontal line.

train a deep Boltzmann machine five times, the unrolled network got 103, 97, 94, 93 and 88
errors when fine-tuned using standard backpropagation and 83, 79, 78, 78 and 77 errors when
using 50% dropout of the hidden units. The mean of 79 errors is a record for methods that do
not use prior knowledge or enhanced training sets (For details see Appendix A).

We then applied dropout to TIMIT, a widely used benchmark for recognition of clean speech
with a small vocabulary. Speech recognition systems use hidden Markov models (HMMs) to
deal with temporal variability and they need an acoustic model that determines how well a frame
of coefficients extracted from the acoustic input fits each possible state of each hidden Markov
model. Recently, deep, pre-trained, feedforward neural networks that map a short sequence of
frames into a probability distribution over HMM states have been shown to outperform tradional
Gaussian mixture models on both TIMIT (6) and a variety of more realistic large vocabulary
tasks (7, 8).

Figure 2 shows the frame classification error rate on the core test set of the TIMIT bench-
mark when the central frame of a window is classified as belonging to the HMM state that is
given the highest probability by the neural net. The input to the net is 21 adjacent frames with an
advance of 10ms per frame. The neural net has 4 fully-connected hidden layers of 4000 units per
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a target Bernoulli distribution. Another regularization involves putting an upper bound on the norm

of the incoming weight vector at each hidden unit. Dropout can be seen as another way of regularizing

neural networks. In this section we compare dropout with some of these regularization methods.

The MNIST dataset is used to compare these regularizers. The same network architecture (784-

1024-1024-2048-10) was used for all the methods. Table. 2.5 shows the results. The KL-sparsity method

used a target sparsity of 0.1 at each layer of the network. It is easy to see that dropout leads to less

generalization error. An important observation is that weight norm regularization significantly improves

the results obtained by dropout alone.

Table 2.5: Comparison of di�erent regularization methods on MNIST

Method MNIST Classification error %
L2 1.62
L1 (towards the end of training) 1.60
KL-sparsity 1.55
Max-norm 1.35
Dropout 1.25
Dropout + Max-norm 1.05

2.7 E�ect on features.

In a standard neural network, each parameter individually tries to change so that it reduces the final loss

function, given what all other units are doing. This conditioning may lead to complex co-adaptations

which cause overfitting since these co-adaptations do not generalize. We hypothesize that for each hidden

unit, dropout prevents co-adaptation by making the presence of other hidden units unreliable. Therefore,

no hidden unit can rely on other units to correct its mistakes and must perform well in a wide variety

of di�erent contexts provided by the other hidden units. The experimental results discussed in previous

sections lend credence to this hypothesis. To observe this e�ect directly, we look at the features learned

by neural networks trained on visual tasks with and without dropout.

Fig. 2.4a shows features learned by an autoencoder with a single hidden layer of 256 rectified linear

units without dropout. Fig. 2.4b shows the features learned by an identical autoencoder which used

dropout in the hidden layer with p = 0.5. It is apparent that the features shown in Fig. 2.4a have

co-adapted in order to produce good reconstructions. Each hidden unit on its own does not seem to be

detecting a meaningful feature. On the other hand, in Fig. 2.4b, the features seem to detect edges and

spots in di�erent parts of the image.

2.8 E�ect on sparsity.

A curious side-e�ect of doing dropout training is that the activations of the hidden units become sparse,

even when no sparsity inducing regularizers are present. Thus, dropout leads to sparser representations.

To observe this e�ect, we take the autoencoders trained in the previous section and look at the histogram

of hidden unit activations on a random mini-batch taken from the test set. We also look at the histogram

of mean hidden unit activations over the minibatch. Fig. 2.5a and Fig. 2.5b show the histograms for the

two models. For the dropout autoencoder, we do not scale down the weights since that would obviously

• Dropout is effective on MNIST. 

• Particularly with input dropout. 

• Comparison against other 
regularizers. 



Summer School on Deep Learning for Image Processing  —  Aaron Courville

• A simple 2D example. 

• Decision surfaces after training:
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Training data

without dropout

with dropout

The unreasonable effectiveness of dropout
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Claim: Dropout is approximate model averaging

• Hinton et al. (2012):  

- Dropout approximates geometric model averaging.
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Claim: Dropout is approximate model averaging

• In networks with a single hidden layer of N units and a 
“softmax” output layer:  

• Using the mean network is exactly equivalent to taking the 
geometric mean of the probability distributions over labels 
predicted by all 2N possible networks. 

• For deep networks, it’s an approximation.
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Bagging predictors
• Bagging:  A method of model averaging. 

- To reduce overfitting (decrease variance of the 
estimator). 

• Methodology:  Given a standard training set D of size 
n,  

- Bagging generates m new training sets , each of size 
n′, by sampling from D uniformly and with 
replacement. 

- train m models using the above m datasets and 
combined by averaging the output (for regression) or 
voting (for classification).
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Is dropout performing bagging?

• There are a few important differences: 

1. The model averaging is only approximate for deep 
learning. 

2. Bagging is typically done with an arithmetic mean. 
Dropout approximates the geometric mean. 

3. In dropout the members of the ensemble are not 
independent. There is significant weight sharing.

13
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Dropout ≈ geometric mean?

• How accurate is the “weight scaling trick” approximation to 
the geometric mean? 

- How does the use of this approximation impact classification 
performance?

• How does the geometric mean compare to the arithmetic 
mean? 

- Conventionally, the arithmetic mean is used with ensemble 
methods?

14
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Dropout ≈ geometric mean?

• Small networks experiments: 
- Exhaustive computation of exponential quantities is possible.

- Two hidden layers (rectified linear), 10 hidden units each, 20 
hidden units total  

- 220 = 1,048,576 possible dropout masks (for simplicity, don’t drop 
input)  

• Benchmark on 7 simplified binary classification 
tasks: 

- 2 different binary classification subtasks from CoverType 

- 4 different binary classification subtasks from MNIST 

- 1 synthetic task in 2-dimensions (“Diamond”)

15
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Quality of the Geometric Mean Approximation

• With ReLUs, weight-scaled predictions perform as well or better than 
exhaustively computed geometric mean predictions on these tasks. 

- Each dot represents a different randomly sampled hyperparameter configuration. No statistically significant 
differences in test errors across hyperparameter configurations on any task (Wilcoxon signed-rank test).

16
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• No systematic advantage to using the arithmetic mean over all possible 
subnetworks rather than the geometric mean. 

- Each dot represents a different randomly sampled hyperparameter configuration. No statistically significant 
differences in test errors across hyperparameter configurations on any task (Wilcoxon signed-rank test).
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Geometric Mean vs. Arithmetic Mean
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Dropout vs. Untied Weight Ensembles

• How does the implicit ensemble trained by dropout compare to an 
ensemble of networks trained with independent weights?
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- With the explicit ensemble drawn from the 
same distribution (i.e. masked copies of 
the original).

- Experiment on MNIST: Average test 
error for varying sizes of untied-weight 
ensembles... 

- Key Observation: Bagging untied 
networks yields some benefit, but dropout 
performs better. 

➡ Dropout weight-sharing has an impact!


